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We consider a d-dimensional stochastic lattice gas of interacting particles, diffusing under the
influence of a short-ranged, attractive Ising Hamiltonian and a “hybrid” external field which is a super-
position of a uniform and an annealed random drive, acting in orthogonal subspaces of dimensions one
and m, respectively. Driven into a nonequilibrium steady state, the half-filled system phase segregates
via a continuous transition at a field-dependent critical temperature. Using renormalization-group tech-
niques, we show that its critical behavior falls into a new universality class with upper critical dimension
d.=5—m, characterized by two distinct anisotropy exponents, which, like all other indices, are comput-

ed exactly to all orders in perturbation theory.

PACS number(s): 64.60.Cn, 05.70.Fh, 66.30.Hs, 82.20.M;j

I. INTRODUCTION

The study of simple model systems, driven into none-
quilibrium steady states by external forces, has received
rapidly growing atitation over the past decade [1-3].
Characterized by a small number of parameters, these
systems allow us to explore their behavior in detail,
through analytic and simulational techniques, and thus
serve as important tools for deepening our understanding
of generic phenomena far from thermal equilibrium. The
“standard model” here is the uniformly driven lattice gas
which consists of particles hopping to vacant nearest
neighbor sites on a fully periodic, d-dimensional square
lattice, subject to the usual Ising energetics and a uniform
external driving field EX, which biases the jump rates
along a particular lattice axis X [1]. As in other driven
systems, the steady state of the standard model cannot be
characterized by a microscopic Hamiltonian unless the
drive vanishes, in which case it reduces to the equilibrium
Ising model [4] with conserved dynamics [5,6]. Focusing
on long-wavelength, long-time behavior, considerable
progress has been made in understanding the effect of
driving forces on correlation functions in the disordered
phase [7], interfacial behavior [8], and universal critical
properties [9,10]. In particular, the pairing of global an-
isotropy with a conservation law for the order parameter
has been recognized [11] as the crucial factor leading to
singular correlations at all temperatures as well as univer-
sal behavior distinct from the Ising model.

According to the global symmetries of the driving
force, different nonequilibrium universality classes
emerge. In the case of the standard model, the drive,
denoted by E, is uniform, resulting in exponents that can
be found to all orders in an expansion around the upper
critical dimension d, =5 [9]. In contrast, if we consider a
lattice gas driven by a random field, acting in an m-
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dimensional subspace with zero average and short-range
correlations in space and time, the upper critical dimen-
sion changes to d.=4—m, and exponents must be com-
puted order by order in e=d,—d [10,12]. We will refer
to these two models as the uniformly and randomly
driven systems, UDS and RDS, respectively.

In this paper, we focus on the critical behavior of an Is-
ing lattice gas on a three-dimensional cubic lattice driven
by an off-axis uniform field, E=E cos6% + E sin6y, which
biases particle jumps along both the X and the § direc-
tion. As has previously been argued [12], such a drive in-
duces a three-fold anisotropy; effectively, particles are
driven uniformly along the (cos6% +sin6y) direction, but
randomly along the (—singX+cos6y) direction. In the
remaining subspace (spanned by Z), jumps are controlled
by energetics only. At half-filling, this system is expected
to undergo a continuous phase transition at a critical
temperature T,.(E,0), from a disordered to a phase-
segregated state with interfaces oriented parallel to the
x-y plane. In the following, we generalize to a d-
dimensional system, driven by a ‘“hybrid” field which
consists of two components, one uniform and one ran-
dom, acting in orthogonal subspaces of dimensions one
and m, respectively.

The paper is organized as follows. We first obtain a
coarse-grained Langevin equation of motion for our
theory. Then, using standard field-theoretic methods
[14,15], we derive the critical scaling forms for the vertex
functions at the fixed point, focusing specifically on the
structure factor and the equation of state. We conclude
with a brief summary and some comments.

II. MODEL

In principle, the dynamics of our system can be fully
specified in terms of discrete microscopic transition rates
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and the associated Master equation. In practice, howev-
er, such a formulation does not lend itself easily to ana-
lytic approaches. A coarse-grained, continuous Langevin
equation of motion for the slow variables of the theory is
a much more convenient starting point for mean-field and
perturbative methods. Given that such a coarse graining
can rarely be made explicit, the continuum theory is usu-
ally postulated on the basis of symmetry arguments and
conservation laws. This approach, which has proven
highly successful in the theory of equilibrium critical dy-
namics, will be followed here also.

For an Ising lattice gas with a fixed number of parti-
cles, the only slow variable, after coarse graining, is the
order parameter field ¢(x,t), corresponding to the local
deviations of the density p(x,¢) away from its average p.
Since we are interested in critical behavior, we choose
p=1, whence ¢(x,t)=2[p(x,t)—3]. For other values of
P, the system phase segregates via a first order transition.
Clearly, ¢(x,t) is conserved, so that the equation of
motion takes the form of a continuity equation,
0,¢+V;=0. For vanishing drive, the current is given by
Model B of Halperin, Hohenberg, and Ma [6], namely
j=—AV8FH /8¢p+¢, where F is the usual Ginzburg-
Landau-Wilson Hamiltonian, A sets the time scale, and
&(x,t) denotes a Gaussian distributed white noise model-
ing the effect of thermal fluctuations. In the presence of a
hybrid drive the dynamics is still conserved, but the form
of the current changes drastically by virtue of two key
effects. (i) The three-fold microscopic anisotropy breaks
the invariance of Model B under the full d-dimensional
rotation group; thus, all d-dimensional Laplacians split
into three components: 3> and V% act in the two (one-
and m-dimensional) driven subspaces, while V? controls
the remaining transverse subspace. All carry coupling
constants whose ratios may differ from unity. In particu-
lar, the extra stirring in the two driven subspaces
enhances the corresponding diffusion coefficients, 75 and
TR, over the transverse 7, so that only the latter vanishes
at criticality. Consequently, all second order gradient
terms (3%, V% and V?) appear in the usual Landau expan-
sion, but at fourth order the transverse term (V2)? suffices
in order to stabilize spatially varying density fluctuations
near criticality. (ii) The uniform field, acting along unit
vector €, adds a systematic contribution j; =Ac($)6€ to
the current, proportional to & (which is the coarse-
grained E) and a density-dependent conductivity Ao (¢).
Due to the excluded volume condition, jp must vanish if

3615

o(¢)x(1—¢?)[14+0(4)]. Summarizing, we obtain the
equation of motion,

3,6(x,t)=A |(r, —V2)\V2p+1,9%+ 7V
+§v2¢3+6a¢2 —-ve, (1)
where
(VEx,)V'E(X, 1)) =2An (—V3)8(x—x")8(t —1t') .
(1b)

If we compare leading terms in the equation of motion
near criticality, after a Fourier transform to wave vectors
k=(kg,kg,k ), we immediately recognize that both kj
and kj scale as k? at the Gaussian level. Thus, operators
such as 3%¢® and V%4> or additional Langevin noise
terms a7, Vg £x with correlations ng, np are irrelevant in
the renormalization group sense, compared to V2$* and
n,. Even though present in principle, they do not con-
tribute to the dominant critical singularities and may
therefore be neglected. Simple power counting shows
that 3¢ is the leading nonlinearity of the theory, with an
upper critical dimension d,=5—m. The second non-
linearity in (1), i.e., V?¢*, plays the role of a dangerous ir-
relevant operator: while naively irrelevant, it must be re-
tained in order to stabilize the ordered phase below criti-
cality. Clearly, we recover the equation for the UDS [9]
by setting m =0; similarly, the RDS fixed point equation
[10] results if we set 6 =0 and expand the transverse sub-
space to include €.

Expecting mean-field exponents in dimensions d =2d,
(with logarithmic corrections in d =d, itself), and noting
that our hybrid scenario requires d > m +2, we recognize
that d =3, corresponding to m =1, is the only “interest-
ing” case. Here, nontrivial exponents emerge in an ex-
pansion around the upper critical dimension d, =4.
Focusing on this case, we now proceed to compute
universal scaling properties and critical exponents, using
the standard methods of renormalized field theory
[14,15]. Given the similarity of the two theories, the
treatment here closely follows that for the UDS [9].

III. RENORMALIZED PERTURBATION
THEORY

_ Introducing the Martin-Siggia-Rose response field
d(x,t) [16], we rewrite the Langevin equation as a dy-

the local density is zero or 1 whence namic functional [15],
1
J[6,81=[ [a’ dz{$a,¢—x$[<q—vz)v2¢+rEa2¢+TRv§¢+%v2¢3+éa¢2]+xnl$v2$} , @)

so that all correlation and response functions of the sys-
tem can be expressed as functional averages with weight
exp(—J).

In addition to dimensional analysis, (2) is invariant un-
der a second scale invariance, corresponding to

(kg kg,k)—(kg /o, kg /Bk,) , ¢—(aB™' %,
$—+(aﬁm)l/2$, TE—->a27'E , TR —>BZ'TR s 3)

6’_’a3/2ﬁm/26 ,g__)aﬁmg .

[ ~

Recognizing that 64342 is a cubic operator so that the
expansion will be in powers of 62, we identify the true di-
mensionless expansion parameter of the theory as

U=Gpap g P26 @

Here, G, is a geometric factor depending on both m and
d, e=5—m —d, and p is an external momentum scale, set
by k.

We first focus on scaling in the disordered phase, so
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that the coupling g may be set to zero. Let T’ ~,n be the
one-particle irreducible vertex function with N external ¢
legs and N external ¢ legs. In our theory, only I'; ; and
'y , are primitively divergent. Since each vertex carries a
momentum kg on its ¢ leg and J[$,$] is symmetric un-
der reflections ky— —kg, 6— — G, the divergent parts
of T'; , must be of the form I'{"{~kZu[1+0(u?)]. Thus,
only 75 needs to be renormalized in order to render I';
finite. Further, J is invariant under the Galilei trans-
formation  ¢(x,t)—>d(x +AEaet,t)+a, (x,1)—>d(x
+A&aeét,t) which, in analogy to the uniformly driven
case [9], leads to a Ward-Takahashi identity [17] relating
[ ,and Ty

T,k ;0,0)=A6ky 2T, (ko) . (5)

) a(l) )

As a consequence, both I'| | and '} , are finite upon re-
normalization of a single coupling, namely 7, which
gives rise to the only independent, anomalous exponent
appearing in our theory.

Next, we define the renormalized coupling 78 via
rg=Z,7%. Using dimensional regularization and
minimal subtraction, a one-loop calculation of I'; ; yields
Z .=1—(3/4€)u+O0(u?) as well as the geometric factor

r 3—m—e¢ r 1+.E_
2 2
Gu= . (6)
(47T |2—m —%

In the remainder of this paper, all coupling constants and
vertex functions will be renormalized ones, so that we
may omit the superscript R to economize on notation.
The Wilson functions follow as

§(u)Eya#(lnTE)|bare=—%u +0(u?), (7a)
Blu)=pd, U lpyre=—[e+3E(w) ]u . (7b)

The critical scaling behavior of our theory is controlled
by the infrared stable solution of the fixed point equation
B(u)=0, given by u*= %6+0(62) to one-loop order in di-
mensions d <d,. We emphasize that the form of B(u),
Eq. (7b), is completely determined by the symmetries of
our model, without any explicit perturbative calculations;
thus, it is exact to all orders in u, within perturbation
theory. Consequently, we obtain §*=&(u*)=—2¢€ ex-
actly, at the infrared stable fixed point u *0 (note that
the Gaussian fixed point u* =0 is always infrared unsta-
ble), without having to compute u* explicitly. Still, the
one-loop calculation leading to Z_,=1—(3/4€)u is not
redundant. While the magnitude of the O(u) term is
indeed unimportant (any numerical prefactors can obvi-
ously be absorbed in the definition of G,,;), its sign is cru-
cial: only a negative one-loop contribution produces an
infrared stable, nonvanishing u *.

The independence of the bare vertex functions on the
parameter u leads to the renormalization group equation
for their renormalized counterparts,
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(13, +B(u)3, +7péu)d, ]
XDy vk}, TR, 4,A)=0 . (8)

In the scaling limit u << 1, the coupling u flows to the in-
frared stable fixed point u *, where we can integrate (7a),
resulting in 75(p)x ,ugt. Combining the solution to (8)
with dimensional analysis and the scale invariance (3), we
obtain the full asymptotic scaling behavior of the vertex
functions, at the fixed point

I“N,N({k,a)};n)
Ty

>
©

[2]
>4

=)\u’T -
Mg v u ’ﬂ2~s‘/2 Tt

b

[ ki kg kg

9)

where p=d+m+5——%§*-—N(d+m+3—%§*)+N(d
+m —1—1£*), and we have suppressed all arguments of
Iy y that are not affected by rescalings. The most strik-
ing feature here is the unconventional, strongly aniso-
tropic scaling of wave vector components in the three
subspaces. In order to identify the usual, and any
new, exponents for our theory, it is more convenient
to specialize to the structure factor, S(k,t)
= fdwe"“”I‘z,o(k,a))/lI‘lyl(k,co)Iz. In the case of three-
fold anisotropy, its most general scaling form (see, e.g.,
[2)) is expected to be

S(k kg, kg,t,7))
k, kg kg ;T

— tu
’ 1+AL 7 1+A ’ [ V21
2 E R um

:u*2+ns

>

(10

which serves as a defining relation for critical indices, in-
cluding two new anisotropy exponents, Ay and Ap. Ex-
ploiting (9), we find specifically for our hybrid model,
ko ke keoam
T 'uzAg*/z T

(11
whence Ap=1—31&(u*)=1+€/3, Ag=1, v=1, =0,
and z=4. Since 7 is the only coupling that suffers re-
normalization, Ay is the only exponent in our model
which develops an anomalous dimension, known exactly
to all orders in €. All other indices retain their Gaussian
values, including A; =1, by virtue of the Gaussian scal-
ing kg < kf. We should stress, however, that a whole zoo
of additional critical exponents can be defined, based on
Egs. (10) and (11); three correlation length exponents fol-
low from k, < 7,%, ky « 7., and kg < 7,%, resulting in

’

S(k,,kg,kg,t,7)=pn"°S

1
2 )

V.L:V:

vE=v(1+AE)=%

vp =v(1+Ag)=1.

2+ £ (12a)

3

>
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Similarly, we obtain three dynamical exponents,

z = 4 Zp = z =2
1+Ag e T R 144,
2+§

z,=z=4, zp=

(12b)

Finally, six different n-like exponents characterize the an-
isotropic power-law decays of the structure factor
(unprimed indices) and its Fourier transform, the two-
point correlations (primed indices), depending on the sub-
space (labeled 1, E, and R) along which the power law is
measured. They follow from (10) via rescalings:

m=mn, Mg~ 1+AE > TR 1+AR ’

n=m+Ag+mlAy ,

(12
,_ mtAptmAg—(d—2)A, ©
NE= 1+AE ’
, 7]+AE+mAR_(d'_2)AR
MR 1+A,
Once expressed in terms of Ap=1—1&u*)=1

+€/3, A =1, and =0, all of these are exact to all or-
dersin €.

One further exponent, namely the order parameter in-
dex B, remains to be determined. Since our scaling
analysis, up to this point, presumed g =0, it cannot be
used directly to extract information about the ordered

phase. Rather, g must be included in the renormalization
procedure as a dangerous irrelevant coupling. The ex-
ponent B then follows from the renormalized equation of
state.

The treatment of the dangerous irrelevant coupling g
follows standard techniques [18], and is completely analo-
gous to the uniformly driven case [9]. Since, in principle,
all operators of the same naive dimension as V?¢> mix
with each other, the first step consists in diagonalizing
the matrix renormalization conditions, resulting in a set
of “eigenoperators” which are invariant under the renor-
malization group. The associated eigenvalues, evaluated
at the fixed point u *, correspond to the scaling powers of
the eigenoperators. Fortunately, the coupling g appears
only in a single eigenoperator, whose scaling power
k*=x(u*)=2—e—15(u*)=2(d+m—2)/3 can be
found exactly, since it is again completely determined by
the combination of Galilei and scaling invariances of the
model. Thus the coupling g remains irrelevant at the
nontrivial fixed point, for alld >2—m.

Next, we introduce a “magnetic” field / into the dy-
namics, in order to obtain the equation of state [19].
Respecting the conservation law and taking into account
that the system orders into “strips” oriented transverse to
the nondriven directions, the conjugate field enters the
dynamic functional (2) through an additional term
f d f dt A@(x,t)V*h(x,). The equation of state then
follows from the vertex generating functional I'{4,4},
which may be expanded in a Taylor series around the
(nonzero) magnetization M:

9 &
A =———T{$ ¢}
ak% 8$ k=0,8=0,¢=M
3 <MY
=— 3 —T y({k, ,kg=0,kg=0,0=0},7,8) . (13)
ak% % N! IN 1 E R 1 kl=

As long as g differs from zero, we can compute the vertex
functions in the disordered phase and then analytically
continue to 7, <0. The key point to recognize in (13) is
that, for kz =kz =0, T';; and T, are the only nonvanish-
ing vertex functions appearing on the right hand side,
contributing only at the tree level. Thus, (13) reduces to
the Landau equation of state, and we find B=1, exact to
all orders in €.

For completeness, we also quote the full scaling form
of the equation of state,

h(M,7,8 )='u<d+m+3—g‘/2)/2

Xh(M/‘u(d+m—1—§*/2)/2 ,Tl/'uz ’g“x*) ,
(14)

and remark that, even though B follows from (13) without
explicit reference to our expression for x*, the latter is re-
quired to ensure the consistency of the scaling form (14)
with the (exact) Landau form of the scaling function.

IV. CONCLUSIONS

To summarize our results, we have analyzed the
universal steady-state properties of a hybrid driven
diffusive system near its critical point. In dimensions
d <d,=5—m, the scaling behavior of our model is con-
trolled by a nontrivial fixed point, the outstanding feature
being the emergence of two anisotropy exponents,
Ap=1+€/3 and Agp=1. These determine the relative
scaling of wave vectors kp and ki with k,, ie,
kp<(k, )*f and kg <JE(kl)AR. Only A develops an
anomalous dimension under the renormalization group,
known exactly by virtue of an intricate interplay of
Galilean and scaling symmetries; the exponents 7, v, z,
and B, defined through structure factor and equation of
state, retain their mean-field values. Various other in-
dices follow from scaling laws.

Comparing our Ag here with its equivalent in the uni-
formly driven case, we note that both are identical if ex-
pressed in terms of the appropriate e=d. —d. However,
the scaling properties of our hybrid model are not just the
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result of a dimensional shift, since the presence of the
randomly driven subspace gives rise to new exponents
AR, Vg, Zg> Mg, and 7. Moreover, none of these agree
with their counterparts in the pure random case, where
both v and Ay develop independent anomalous dimen-
sions.

Setting €e=1, we expect our results to capture the
universal critical behavior of a lattice gas in d =3, driven
by an off-axis field in the x-y plane. We predict, e.g.,
Ap=% and Ap=1 for the anisotropy exponents and
ng =2 for the critical spatial decay of the two-point
correlations along the uniformly driven direction, in con-
trast to Ay =23 and 7 =0 for the UDS in d=3. Even
though a full simulational test of our predictions requires
a careful, anisotropic finite size analysis [20], the mea-
surement of 7y might provide some preliminary insight
regarding the different universality classes of the UDS
and the hybrid model.

We note, in conclusion, that our results are also appli-
cable to a class of two-temperature lattice gases [21]. In
the simplest case, particle-hole exchanges in such a sys-

tem occur at fwo temperatures T, and T, < T, where the
former controls the jumps within an m-dimensional,
“parallel” subspace, while the latter controls the remain-
ing (d —m)-dimensional, “transverse” space. Since such
a dynamics is anisotropic and enhances the parallel over
the transverse diffusion coefficient, it is expected to be-
long into the universality class of the RDS [10]. This
conjecture is indeed borne out by a sophisticated finite
size analysis of high-precision Monte Carlo data [22].
Thus, we expect to be able to observe the universal criti-
cal behavior of the hybrid model by simulating a two-
temperature model in which one of the transverse direc-
tions is driven by a uniform field.
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